High(er) Intensity Proton Operation

Christoph Montag

Motivation

- Electron lenses will allow for higher beam-beam parameters
- Higher intensities expected to double proton luminosity
- Goal: 3e11/bunch, with $\sigma_s = 20 \, \mathrm{cm}$ bunch length
- ASE limit in Run-12 was 2.4e13 protons/beam at 250 GeV
- High intensity studies limited to injection energy

High intensity beam injection Blue intensity

2.8e13 total in 107 bunches injected before permit was pulled by kicker smoke detector

109 high intensity bunches (2.6e11) in Yellow

Cryo temperature rises by 20 mK, corresponding to 300 W additional cryo load - in agreement with expectations

IR4 vacuum

Vacuum during one-by-one injection of last bunches

WCM profiles of 109 Yellow bunches

Approx. 2 nsec RMS, 9 A peak current

Ramping
6x6 bunch high intensity ramp

RF problems in Blue and poor injection lifetime in Yellow prevented larger bunch number
Almost 3e11 /bunch in Blue, 2.6e11 in Yellow
Good ramp transmission to 100 GeV, including rebucketing

Impedance

- Z_{\perp} was measured at 3 5 M $\Omega/{\rm m}$ in 2002. In 2010, Rama reported 18 M $\Omega/{\rm m}$
- Measured tune of bunches with different intensities, using BTF/BBQ
- Since $\Delta Q \propto Z_{\perp}/(\sigma_z E)$, short bunches at injection energy give best resolution
- Required tune resolution: few 1e-4

BBQ tunes during impedance measurement

Higher intensity causes higher tunes - BBQ intensity dependence?

To be repeated using averaged ARTUS signal

Beam dump

- Beam dump was upgraded for Run-11 to avoid quenches of downstream magnets (sleeves in beam pipe)
- \bullet According to simulations, no more quenches to be expected for bunch intensities up to $\approx 2.5e11$
- Additional BLMs were installed in a location that is relevant for those quench-causing losses
- Spent almost all the proton run on modifying theses
 BLMs such that they don't saturate during aborts

Dump BLM signals vs. intensity

BLM signal proportional to beam intensity, not saturating Can be used now during tests to minimize losses, for instance by varying the kicker strength

Minimum allowable bunch length vs. bunch intensity

Operating with 3e11/bunch and $\sigma_s \approx$ 20 cm bunch length seems safe and feasible

Summary

- 2.6e11/bunch in 109 bunches were successfully injected
 - close to the goal
- Resistive wall heating agrees with expectations
- Dump BLMs are ready for systematic studies

• To be done:

- 1. Impedance measurement, using averaged ARTUS signal
- 2. Determine minimum chromaticity required to stabilize beams
- 3. High intensity ramps, with 109 bunches (including rebucketing)
- 4. Beam dump studies
- 5. BPM cable heating measurements; thermocouples didn't work in Run-12